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Abstract

Purpose: To remove retinal shadows from optical coherence tomography (OCT) images of the optic nerve head
(ONH).
Methods: 2328 OCT images acquired through the center of the ONH using a Spectralis OCT machine for both
eyes of 13 subjects were used to train a generative adversarial network (GAN) using a custom loss function.Image
quality was assessed qualitatively (for artifacts) and quantitatively using the intralayer contrast �� a measure of
shadow visibility ranging from 0 (shadow-free) to 1 (strong shadow) and compared to compensated images. �is
was computed in the Retinal Nerve Fiber Layer (RNFL), the Inner Plexiform Layer (IPL), the Photoreceptor layer
(PR) and the Retinal Pigment Epithelium (RPE) layers.
Results: Output images had improved intralayer contrast in all ONH tissue layers. On average the intralayer con-
trast decreased by 33.7 ± 6.81%, 28.8 ± 10.4%, 35.9 ± 13.0%, and 43.0 ± 19.5% for the RNFL, IPL, PR, and
RPE layers respectively, indicating successful shadow removal across all depths. �is compared to 70.3 ± 22.7%,
33.9 ± 11.5%, 47.0 ± 11.2%, 26.7 ± 19.0% for compensation. Output images were also free from artifacts com-
monly observed with compensation.
Conclusions: DeshadowGAN signi�cantly corrected blood vessel shadows in OCT images of the ONH. Our al-
gorithm may be considered as a pre-processing step to improve the performance of a wide range of algorithms
including those currently being used for OCT image segmentation, denoising, and classi�cation.
Translational Relevance: DeshadowGAN could be integrated to existing OCT devices to improve the diagnosis
and prognosis of ocular pathologies.
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1 Introduction
Glaucoma is a leading cause of irreversible blindness and occurs due to the death of retinal ganglion cells.[1] In
its most common form, there are no symptoms, making regular diagnostic tests crucial for early detection and
treatment.[2] Clinical research suggests that glaucomatous eyes have a unique biomechanical pro�le that allows
di�erentiation from non-glaucomatous eyes.[3]

Optical coherence tomography (OCT) has been proven to be a promising tool for automated classi�ers to iden-
tify glaucomatous eyes from healthy eyes.[4] It uses low-coherence light to capture micrometer resolution, three-
dimensional images, allowing in-vivo visualization of a patient�s retinal layers, making it the least invasive choice
among other diagnostic tools as it does not require contact with the eye or eye drops to be applied before testing.[5]

However, due to the high absorption sca�ering property of retinal vessels, information from locations beneath
these vessels are is signi�cantly decreased.[6] �is causes artifacts known as retinal shadows which decrease the
readability of retinal OCT B-scans. �ese artifacts also result in errors in thickness assessment of the RNFL, which
has clinical implications for the diagnosis management of glaucoma where changes in the RNFL need to be monitored
accurately over time.[7] �e shadows are also the main artifact occluding deep structures such as the lamina cribrosa
(LC).[8] Consequently, it is crucial to develop algorithms to replenish the information lost within these shadows to
achieve the best automated retinal layer segmentation and eventual diagnosis accuracy.

Fabritius et al.[9] described a compensatory method to reduce the e�ects of vessel artifacts on interpretation
of the retinal pigment epithelium (RPE) layer. Girard et al.[10] also improved the quality of OCT images through
compensation methods by correcting the e�ects of light a�enuation and by be�er estimating the optical properties
(i.e. re�ectivity) of the tissues. �ese predictions are, however, only estimations or based on simple optical models
that may result in secondary artifacts being produced such as inverted shadows.

Arti�cial intelligence techniques have been extensively applied to shadow removal algorithms for normal images
with varying levels of success.[11, 12] �e landmark article [13] introduced generative adversarial networks (GANs)
architectures. �is technique paved the way for GANs to be applied for other purposes, such as shadow removal,[11]
shadow detection,[14, 15] and unwanted artifact removal.[16]

In this study, we aimed to test whether a custom GAN (referred herein as DeshadowGAN) could automatically
detect and remove shadows according to a predicted shadow score in order to improve the quality of OCT images of
the ONH.

2 Methods

2.1 Patient Recruitment
A total of 13 healthy subjects were recruited at the Singapore National Eye Centre. All subjects gave wri�en informed
consent. �is study adhered to the tenets of the Declaration of Helsinki and was approved by the institutional review
board of the hospital. �e inclusion criteria for healthy subjects were: an intraocular pressure (IOP) less than 21
mmHg, and healthy optic nerves with a vertical cup-disc ratio (VCDR) less than or equal to 0.5.

2.2 Optical Coherence Tomography Imaging
Recruited subjects were seated and imaged in dark room conditions by a single operator. A standard spectral do-
main OCT (Spectralis, Heidelberg, Germany) system was used to image both eyes of each subject. We obtained 97
horizontal B-scans (32µm distance between B-scans; 384 A-scans per B-scan) from a rectangular area of 15° × 10°
centered on the ONH. 75 times signal-averaged images were obtained from multi-frame volumes. In total, our train-
ing set consisted of 2, 328 multiframe baseline B-scans from 24 3D volumes. Our test set consisted of 291 multiframe
baseline B-scans from three 3D volumes.
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2.3 DeshadowGAN: Overall description
Our algorithm comprised of two networks competing with each other. One network, called the shadow detection
network, predicted which pixels were considered as shadowed pixels. �e other network, called the shadow removal
network, aimed to prevent the shadow detection network from �nding shadowed pixels by removing shadows from
baseline B-scans.

First, we trained the shadow detection network �ve times on baseline images with their corresponding manually
segmented shadow mask as the ground truth. Binary segmentation masks (size: 496× 384) were manually created
for all 2, 328 B-scans using ImageJ[17] by one observer [HC]. Next, we trained the shadow removal network once
by passing the baseline as input and using the predicted binary masks as part of the loss function. Lastly, we trained
the shadow detector network another �ve times with the output from the shadow removal network, and another
�ve times with the manually segmented binary masks as ground truth. (Figure 1)
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Figure 1: Overall algorithm training diagram.

2.3.1 Shadow Detection Network

A neural network inspired by the U-Net architecture[18] (Figure 2) was trained with a simple Binary Cross Entropy
loss using the hand-cra�ed segmentation masks as ground truth. �is network had a sigmoid layer as its �nal
activation, making it a per-pixel binary classi�er. It was then trained with original images concatenated with the
output from a shadow removal network, using the manually segmented masks as ground truth.

4



Figure 2: Shadow Detector network architecture. Numbers on top of each rectangle represents the number of
feature maps and numbers below each rectangle represents the feature map size. Network consists of 13.4M
parameters, occupying 648 Mo of RAM on a single Nvidia GTX1080Ti GPU.

�e shadow detection network �rst performed two convolutions with kernel size 3 and stride 1, followed by a
ReLU activation[19] a�er each convolution. �en, images were downsampled using a 2× 2 maxpooling operation,
halving the size of the height and width of the feature maps. �is occurred 4 times, with the number of feature maps
at each smaller size increasing from 1 to 64, 128, 256, 512 respectively.

�e shadow detection network comprised of two towers. A downsampling tower at each stage sequentially
halved the dimensions of the baseline image (size: 512× 512) via maxpooling to capture the contextual information
(i.e. spatial arrangement of tissues), and an upsampling tower which sequentially restored it back to its original
resolution to capture the local information (i.e. tissue texture).[20] Transposed convolution was performed 4 times
in the upsampling tower for the predicted segmentation masks to be size 512 × 512, before passing to a sigmoid
activation function for compression of each pixel to a value between zero and one.

2.3.2 Shadow Removal Network

�e shadow removal network was inspired from the Deep Video Portraits approach of [21]. A schematic of the
architecture is shown in Figure 3. Baseline images were inpu�ed into the network and passed through a downsam-
pling segment and an upsampling segment (colored in yellow and blue, respectively; Figure 3b). �e downsampling
segment allowed the network to understand contextual information, while the upsampling segment increased the
resolution of the output. Features from both segments were combined to produce a more precise output in the
successive convolution layer.[22]
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Figure 3: All arrows represent a forward pass of the output from one layer to the input of the next layer. Each box
represents a module (a set of layers). �e size of our input image is 512× 512. (a) De�nitions of the layers in
downsampling and upsampling modules within the shadow removal network. Do�ed boundaries indicate that the
module is present only within some layers. In and out values at the top and bo�om of each rectangle represents the
number of feature maps being input and output from that module respectively. (b) Size row is the size of the output
of each module (rectangles above and below it).

�e shadow removal network consisted of 8 downsampling modules and 8 upsampling modules (Figure 3b). �e
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�rst encoding layer and the last decoding layer did not employ batch normalization. We included a dropout of 0.5
only in the �rst 3 upsampling layers. �e network had 55.7M parameters, and occupied 820 Mo of RAM on a Nvidia
GTX 1080Ti GPU. Each module in the downsampling module consisted of a convolution layer (stride 2, kernel size
4 × 4) followed by a batch normalization and a leaky ReLU activation function. Every downsampling module re-
duced the feature map size by half, enabling the network to derive contextual information and encode its input into
an increasing number of �lters. �e maximum number of �lters plateaued at 512 for 4 times, and then moved on to
the decoding segment.

Each decoding segment consisted of 3 other submodules, namely, Up, and two Re�ne submodules. �e Up sub-
module consisted of a transpose convolution (size 4 × 4, stride 2) followed by a batch normalization and a ReLU
activation function. Every Up submodule allowed the network to improve its decoding e�ciency from encoded
information from the input. �e Re�ne submodule consisted of a convolution (size 3 × 3, stride 1) followed by a
batch normalization and a 0.5 dropout. We repeated this process until a 512 × 512 feature map was obtained and
we reduced the number of feature maps produced in the last layer to 1 to mimic input images. Finally, we applied a
pixel-wise sigmoid activation to compress all activations from the decoding segment to values between 0 and 1.

2.4 Image Augmentation
An image augmentation network was created using Pytorch [23] to perform on demand image augmentation during
training. Our data augmentation consisted of random transformations including: horizontal �ipping, image rotations
(angle between−40° and 40°), XY translations (−20% to 20% of the image size), image scaling (scaling factor between
0.8 and 1.2), and image shear (shear angle between−20° and 20°). All images were then resized to 512× 512 pixels.

2.5 Weighted-mixture loss function for the shadow removal network
An adversarial shadow removal network was simultaneously trained using a custom loss function (to be minimized
during training) that reduced the appearance of shadows in output images. �is custom loss function was used to re-
store structural information under blood vessel shadows while maintaining structural information in all other areas.
It consisted of a tuned weighted combination of four losses: the content, style, total variation, and shadow losses, as
brie�y explained below.

Content Loss. We used the content loss to ensure that all non-shadowed regions of a given image remained
the same a�er shadow correction. To do so, we compared the high-level image feature representations (using a
pretrained Resnet152 architecture) from a given baseline image with those from its deshadowed output. Note that
the content loss function has been used in Style Transfer [24] and has been shown to maintain �ne image details
and edges. To calculate the content loss, we �rst segmented all shadows from the baseline image with our shadow
detection network. All shadows were then masked (pixel intensity values equal to zero) in order to generate two
images: Bmasked (baseline image with masked shadows) and Dmasked (deshadowed image with masked shadows) as
shown in Figure 4.

7



Figure 4: Masking of baseline and deshadowed images during content loss and style loss calculations. Predicted
shadow mask for the baseline image is used to mask both the baseline and deshadowed image.

Bmasked and Dmasked were then passed to the Resnet152 network [25] itself trained using the ImageNet dataset.
�e content loss was then calculated for each image pair as an Euclidean norm as follows:

Lcontent(Bmasked, Dmasked) =
∑

i∈{9,33,141}

1

CiHiWi
|Pi(Bmasked)− Pi(Dmasked)|2 (1)

where Pi(x) is a feature map that contains the activations of the i-th convolutional layer of the Resnet152 net-
work for a given image; the quantitiesCi,Hi andWi represent the channel number, height, and width of the feature
map Pi(x), respectively. �e convolutional layers mentioned in equation (1) (i.e. 9, 33, 141, and 150) were selected
because they are the �nal convolutional layers in the Resnet152 network before downsampling.

Style Loss. On top of the content loss, we also used the style loss [24] to ensure that the image’s style (texture)
remained the same in the non-shadowed regions a�er shadow correction. We compute the gram matrix of an image
to �nd a representation of its style. �e style loss was then computed for each image pair (Bmasked, Dmasked) and was
de�ned as the Euclidean norm between the Gram matrices of Bmasked and Dmasked:

Lstyle(Bmasked, Dmasked) =
∑

i∈{9,33,141}

= |Gi(Bmasked)−Gi(Dmasked)|2 (2)

where Gi is a Ci × Ci matrix de�ned as Gi(x) = Pi(x)Ci,Wi,Hi
× Pi(x)Hi,Wi,Ci

.

Total variation loss. We used the total variation loss to prevent checkerboard artifacts from appearing in
deshadowed images. It was de�ned as the sum of the di�erences between neighboring pixels in a given deshadowed
image, D:

LTV(D) =
1

n

∑
i,j

|Di+1,j −Di,j |+ |Di,j+1 −Di,j | (3)

where n is the total number of pixels in the deshadowed image and i and j are the row and column numbers, re-
spectively.
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Shadow Loss. �e shadow loss was de�ned to ensure that shadows were properly removed so that they become
undetectable to the shadow detection network. Once a given image D was deshadowed, it was passed to the shadow
detection network to produce a predicted shadow mask, MD (with pixel intensities equal to 1). All pixel intensities
in the shadow mask were summed and this sum was de�ned as the shadow loss function.

Total loss. �e total loss for the shadow removal network was de�ned as

Ltotal = w1 × (content loss) + w2 × (style loss) + w3 × (shadow loss) + w4 × (total variation loss) (4)

wherew1, w2, w3 andw4 are weights that were given the following values: 100, 0.1, 100, and 1×10−5, respectively.
Note that all weights were tuned manually through an iterative approach. First, we found that with a value of
w1 = 100, we generated images with no content loss (i.e. no structural changes), but not without the presence of
checkerboard artifacts. �ese artifacts could be removed when choosing w2 = 0.1 and w4 = 1e− 5.[28] Finally, we
increased the value of w3 until the shadow loss became the largest component in the total loss function (so that the
focus remained on removing shadows), and until shadow removal was deemed qualitatively acceptable for smaller
width shadows. �is was optimum when w3 = 100.

2.6 Training Parameters
All training and testing were performed on a Nvidia GTX 1080 Ti GPU with CUDA 10.1 and cuDNN v7.6.0 accel-
eration. Using these hardware speci�cations, each image took an average of 10.3 ms to be deshadowed. Training
was performed using the Adam optimizer at a learning rate of 1 × 10−5 and a minibatch size of b = 2. A learning
rate decay was implemented to halve learning rates every 10 epochs. We stopped the training when no observable
improvements in output images could be observed.

2.7 Shadow Removal Metrics
Intralayer Contrast. We used the intralayer contrast to assess the performance of our algorithm in removing
shadows. �e Intralayer contrast was de�ned as

Intralayer Contrast =
∣∣∣∣I1 − I2I1 + I2

∣∣∣∣ (5)

where I1 is the mean pixel intensity from 5 manually-selected regions of interest (size: 5× 5 pixels) that are shadow
free in a given retinal layer, and I2 is that from 5 neighboring shadowed regions of the same tissue layer. �e
Intralayer contrast varies between 0 and 1 where values close to 0 indicate the absence of blood vessel shadows, and
values close to 1 indicating the strong presence of blood vessel shadows. We computed the intralayer contrast for
multiple tissue layers of the ONH region, namely the RNFL, the PR, IPL and the RPE, before and a�er application
of our deshadowing algorithm. �e intralayer contrast was computed on an independent test set consisting of 291
images. Results were reported in the form of mean ± standard deviation.

2.8 Comparison with Adaptive Compensation
To evaluate the e�ectiveness of our deshadowing algorithm, we compared images deshadowed using DeshadowGAN
with images enhanced with adaptive compensation [6, 26], the gold-standard for correcting OCT shadows. For
adaptive compensation, we used contrast, decompression, compression, and threshold exponents of 1,4,4, and 6,
respectively. Intralayer contrasts were also computed for all compensated images (same regions as those used for
the baseline images).

2.9 Validation using a Test Scenario with Known Ground Truth
We investigated whether our deshadowing algorithm was capable of restoring information below blood vessel shad-
ows without introducing unwanted artifacts. To do so, we require ground-truth images without blood vessel shadows
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but such images are not easy to obtain in vivo. An alternative is to add arti�cial shadows to a given baseline image
and assess whether our algorithm can remove them without introducing artifacts.

Accordingly, we created exponential decay maps on images to simulate the e�ect of light a�enuation and trained
DeshadowGAN with such images. A shadow can be simply simulated as:

(Shadow Pixel)ij = (Baseline Pixel)ij × e
−αi (6)

where i is the row number and α indicates the rate of decay. We used the same training and testing image sets,
except that 2 arti�cial shadows (random width between 1 and 100 pixels; random α between 100 and 300) were ran-
domly added to each baseline image. DeshadowGAN was re-trained with the exact same aforementioned procedure,
including the manual segmentation of the arti�cial shadows. Note also, that during training, the DeshadowGAN al-
gorithm did not have access to the ground truth baseline images without shadows. A�er deshadowing, the presence
of artifacts was assessed qualitatively.

3 Results

3.1 DeshadowGAN Decreased the Intralayer Contrast
A�er application of our algorithm, blood vessel shadows from unseen images were successfully identi�ed and cor-
rected from each retinal layer as observed quantitatively and qualitatively. On average, we observed improvements
in intralayer contrast of 33.7 ± 6.81%, 28.8 ± 10.4%, 35.9 ± 13.0%, and 43.0 ± 19.5% for the RNFL, IPL, PR, and
RPE layers respectively. �is can be qualitatively observed in a B-Scan of the peripapillary tissues in Figure 5.

Figure 5: Images of retinal layers before and a�er deshadowing of areas (a) away from the optic disc, and (b) areas
around the optic disc.
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3.2 Comparison with Adaptive Compensation
DeshadowGAN was able to correct shadows without a�ecting the contrast of anterior layers, without adding noise,
and without creating artifacts (Figure 6).

Figure 6: Compensation Artifacts Comparison with DeShadowGAN. Arti�cially brightened artifacts and
over-ampli�cation of noise in compensated image (top right). Inverted shadows in compensated images (bo�om
right).

In addition, DeshadowGAN had be�er shadow removal capabilities than compensation as layer depth increased.
�is can be observed from the box plot in Figure 7, where the 25-th and 75-th percentiles of the intralayer contrast
for DeshadowGAN gradually increased against those of compensation from the RNFL to the RPE layers.
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Figure 7: Intralayer contrast comparison between baseline, deshadowed and compensated images. When compared
with compensation, DeShadowGAN tends to perform be�er in deeper layers.

Shadow removal was also qualitatively corroborated by observation of the �a�ened lateral pixel intensities
(across shadows) for the PR, RPE, and RNFL layers before and a�er shadow removal (Figure 8 – right column).
DeshadowGAN recovered the shadows to a larger extent as compared to compensation. Furthermore, we observed
that compensation did not have an increase in shadow information but rather a decrease in non-shadow intensities
in shallow layers, as non-shadow pixel intensities were found to be up to 50% lower a�er compensation.
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Figure 8: Layer-wise lateral pixel intensities across the PR, RPE, and RNFL layers. Direction of progression is along
arrow at the bo�om of each image. 13



3.3 Proof of Principle: DeshadowGAN Did Not Create Artifacts
�alitative analysis of our results showed that no arti�cial anatomical information was created within deshadowed
images. �is can be qualitatively observed from Figure 9, where both genuine retinal shadows were retained, albeit
not as clearly de�ned as compared to the ground truth (baseline images in this case).

Figure 9: Arti�cial shadow removal experiment results. From le�: Baseline with arti�cial shadow, deshadowed
image from DeshadowGAN, Baseline image without arti�cial shadow.

4 Discussion
In this study, we have proposed a novel deep learning algorithm (DeshadowGAN) with a weighted-mixture loss func-
tion to remove retinal blood vessel shadows in OCT images of the ONH. When trained with baseline OCT images
and manually created binary shadow masks, DeshadowGAN improved tissue visibility under shadows at all depth,
regardless of shadow width. DeshadowGAN may be considered as pre-processing to improve the performance of a
wide range of algorithms including those currently being used for OCT image segmentation, denoising, and classi-
�cation.

Having successfully trained, validated and tested our algorithm with a total of 2, 619 baseline OCT images, we
found that DeshadowGAN can be applied to new images not previously seen by the network in order to correct
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shadows. Furthermore, for new images, DeshadowGAN does not require any segmentation, delineation or identi�-
cation of shadows by the user. Our results con�rmed consistently higher intralayer contrasts, �a�er layer-wise pixel
intensity pro�les across shadows, and the absence of many artifacts commonly found in compensated images. �us,
we may be able to provide a robust deep learning framework to consistently remove retinal blood vessel shadows of
varying sizes and intensities.

In addition, DeshdowGAN was able to successfully eliminate the deleterious e�ects of light a�enuation a�ecting
the visibility of retinal layers and deeper tissues such as the LC. DeshadowGAN helped substantially recover the vis-
ibility of the anterior lamina cribrosa (ALC) boundary, where sensitive pathophysiologic deformation could signal
the onset of early glaucoma.[27, 28, 29] Deep collagenous tissues such as the LC and adjacent peripapillary sclera
(PS) are the main load-bearing tissues of the eye in the ONH region,[6] and it has been reported that biomechanical
and morphological changes in these tissues may serve as risk factors for glaucoma.[30, 31, 32] �e robustness of
the OCT-based measurements performed on these tissues could be substantially improved a�er application of our
proposed algorithm.

Corrected images with DeshadowGAN did not exhibit strong artifacts that can o�en be observed with adaptive
compensation such as: inverted shadows, hyper-re�ective spots, noise over-ampli�cation at high depth (see exam-
ples in Figure 6), and hypo-re�ective retinal layers. For this la�er case, we found that compensation can indeed
reduce tissue brightness in the anterior retinal layers (while enhancing deeper connective tissue layers) by up to
50%. Brightness is typically not a�ected with DeshadowGAN. We also believe that compensation artifacts could
cause issues for automated segmentation algorithms that rely on the presence of homogenous pixel intensity values
within the same layer. [33, 34, 35] Because DeshadowGAN generates signi�cantly less artifacts, it has the potential
to be used as an AI pre-processing step for many automated OCT applications in ophthalmology, such as, but not
limited to: segmentation, denoising, signal averaging, and disease classi�cation [36, 37, 38, 39, 40].

As a �rst proof-of-principle, we also found that DeshadowGAN did not create anatomically inaccurate informa-
tion under shadows while maintaining all other image regions true to their original quality. However, this was only
con�rmed with arti�cial data by simply adding fake shadows (simulated as an exponential decay). If one wanted to
con�rm such results with ex- or in-vivo data, one would need to image the exact same tissue region with and without
the presence of blood �ow. Such experiments would be extremely complex to perform, especially in humans in vivo,
even if blood is �ushed with saline temporarily (as is done with intravascular OCT). However, we understand that
such validations may be necessary for full clinical acceptance of this methodology. From our point of view, it would
also be imperative to further con�rm that DeshadowGAN would not interfere with another AI algorithm aimed at
improving diagnosis or prognosis. On the other hand, it also very possible that DeshadowGAN may increase diag-
nosis/prognosis performance of other algorithms, and we hope to test such hypotheses in details in the future.

Several limitations of this work warrant further discussion. While DeshadowGAN has performed relatively well
on baseline OCT images from healthy eyes, we cannot con�rm that its performance will remain the same for eyes
with pathological conditions such as glaucoma. �is is because deep learning approaches respond unpredictably
when the input is very di�erent from its training images,[41, 42] and ‘pathological’ training sets may be required.
Furthermore, DeshadowGAN was trained on high quality multi-frame OCT images from a single Spectralis OCT
device. It is unknown if the algorithm would be able to perform as e�ectively if applied to OCT images obtained
from other OCT devices, or OCT images from the same device but with signi�cantly less or no signal averaging.
Similarly, each scenario may require a separate training set. We aim to perform further tests to assess all possible
scenarios.

In conclusion, we propose a novel algorithm to correct blood vessel shadows in OCT images. Such an algorithm
can be considered as a pre-processing step to improve the performance of a wide range of algorithms including those
currently being used for OCT image segmentation, denoising, and classi�cation.
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